Converts continuous probability predictions into binary presence/absence based on a specified threshold.
Arguments
- predictions_sf
An
sf
object containing a numeric column namedprediction
, typically produced byh3sdm_predict()
.- threshold
A numeric value representing the probability threshold (e.g.,
0.45
) above which predictions are classified as presence (1
).
Value
An sf
object with the same geometry and all original columns, plus a new
integer column predicted_presence
with values 0
(absence) or 1
(presence).
Details
This function is useful for converting continuous probability outputs into binary presence/absence data for mapping or model evaluation purposes.
Examples
if (FALSE) { # \dontrun{
library(sf)
library(dplyr)
# Crear un sf de ejemplo
df <- data.frame(
id = 1:5,
prediction = c(0.2, 0.6, 0.45, 0.8, 0.3),
lon = c(-75, -74, -73, -72, -71),
lat = c(10, 11, 12, 13, 14)
)
df_sf <- st_as_sf(df, coords = c("lon", "lat"), crs = 4326)
# Clasificar usando un umbral
classified_sf <- h3sdm_classify(df_sf, threshold = 0.5)
# Revisar resultados
print(classified_sf)
} # }