Calculate 5 information theory landscape metrics
Source:R/calculate_it_metrics.R
calculate_it_metrics.Rd
This function allow to calculate 5 information theory landscape metrics
Note
This is a wrapper of the function "sample_lsm" from the landscapemetrics package (see References)
References
Hesselbarth, M.H.K., Sciaini, M., With, K.A., Wiegand, K., Nowosad, J. 2019. landscapemetrics: an open‐source R tool to calculate landscape metrics. Ecography, 42: 1648-1657 (v2.1.4).
Nowosad J., TF Stepinski. 2019. Information theory as a consistent framework for quantification and classification of landscape patterns. https://doi.org/10.1007/s10980-019-00830-x
Information theory-based framework for the analysis of landscape patterns
Examples
# \donttest{
nc <- sf::st_read(system.file("shape/nc.shp", package = "sf"))
#> Reading layer `nc' from data source
#> `/home/runner/work/_temp/Library/sf/shape/nc.shp' using driver `ESRI Shapefile'
#> Simple feature collection with 100 features and 14 fields
#> Geometry type: MULTIPOLYGON
#> Dimension: XY
#> Bounding box: xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965
#> Geodetic CRS: NAD27
nc <- sf::st_transform(nc, crs = 4326)
clc <- terra::rast(system.file("sao_miguel/clc2018_v2020_20u1.tif",
package = "exactextractr"))
bbox <- sf::st_bbox(clc) |>
sf::st_as_sfc() |>
sf::st_as_sf()
h3_bbox <- paisaje::get_h3_grid(bbox, resolution = 6)
#> Warning: attribute variables are assumed to be spatially constant throughout all geometries
result_sf <- paisaje::calculate_it_metrics(clc, h3_bbox)
#> Warning: The 'perecentage_inside' is below 90% for at least one buffer.
#> Warning: Please use 'check_landscape()' to ensure the input data is valid.
# }